

Journal of Organometallic Chemistry 496 (1995) 93-97

Reaction of $[H_2Ru_3Rh(CO)_{12}]^-$ cluster anion with AuPPh₃Cl and structural characterization of AuHRh₂Ru₃(CO)₁₃(PPh₃)₂ by X-ray diffraction and ³¹P and ¹H NMR spectroscopy

Heikki J. Kakkonen^{*}, Laura Tunkkari, Markku Ahlgrèn, Jouni Pursiainen¹, Tapani A. Pakkanen

Department of Chemistry, University of Joensuu PO Box 111, SF-80101 Joensuu, Finland

Received 12 December 1994

Abstract

A novel hexanuclear cluster of Au, Ru and Rh was obtained by reaction of $[H_2Ru_3Rh(CO)_{12}]^{\sim}$ with $[AuPPh_3]^+$. The AuHRh₂Ru₃(CO)₁₃(PPh₃)₂ cluster was characterized by X-ray crystallography and ³¹P and ¹H NMR spectroscopy. The molecule consist of a bicapped tetrahedral metal framework with the Rh atoms adjacent to each other and the Ru atoms forming a trigonal plane. The AuPPh₃ ligand is coordinated to the Rh₂Ru face, the μ_3 -H ligand to a Ru₂Rh face and the other PPh₃ ligand to a rhodium atom.

Keywords: Gold; Ruthenium; Rhodium; Carbonyl; Cluster; Crystal structure

1. Introduction

Mixed-metal clusters of Ru, Rh and Co and their phosphine derivatives have been extensively studied. In particular the tetranuclear compounds have been well characterized [1]. Some pentanuclear clusters are also known, one of which we recently synthesized and characterized [2].

Gold phosphine derivatives of the mixed-metal clusters of Ru, Rh and Co are mainly based on a $Ru_{4-x}Co_x$ (x = 1-3) metal framework [3-8]. Of the clusters with a Ru-Rh-Au framework, AuRuRh₃(CO)₁₂-(PPh₃), AuRuRh₃(CO)₁₂(PPh₃) $\cdot \frac{1}{2}Ru_3(CO)_{12}$ and AuHRu₃Rh(CO)₁₀(PPh₃)₂(μ_3 -COMe) have been crystallographically characterized [9-11]. No gold phosphine derivatives containing a pentanuclear Ru-Rh metal framework were known before the present work.

Gold-containing mixed-metal clusters can generally be efficiently prepared by the reaction of a preformed cluster anion with an appropriate aurating agent, such as the halogeno complex $AuPPh_3Cl$ or the cation $[AuPPh_3]^+$. Rearrangement of the metal framework is rarely observed when one hydride ligand is replaced by a gold phosphine ligand, and so the structures of complexes containing one Au atom often can be predicted from the geometry of the corresponding hydrido derivative.

In the present work we describe a hexanuclear mixed-metal cluster of Ru, Rh and Au. This is the cluster AuHRh₂Ru₃(CO)₁₃(PPh₃)₂ (1), formed in the reaction of the mixed-metal cluster anion $[H_2Ru_3Rh-(CO)_{12}]^-$ with the cation [AuPPh₃]⁺, and its characterization by ¹H and ³¹P NMR spectroscopy and single crystal X-ray diffraction.

2. Results and discussion

We previously reported the synthesis and structural characterization of the mixed-metal cluster anion $[H_2Ru_3Rh(CO)_{12}]^-$ [12] and its reaction with PPh₃ to yield $H_2Ru_3Rh_2(CO)_{13}(PPh_3)$ and $H_2Ru_3Rh_2(CO)_{12}-(PPh_3)_2$ [2]. In the reaction with PPh₃ the originally tetranuclear metal framework was converted into a pentanuclear framework, the number of metal atoms being increased by one Rh atom.

^{*} Corresponding author.

¹ Present address: Department of Chemistry, University of Oulu, Linnanmaa, SF-90570 Oulu, Finland.

Fig. 1. The molecular structure of $AuHRh_2Ru_3(CO)_{13}(PPh_3)_2$ (1).

The novel hexanuclear cluster now reported was made by a reaction between the $[H_2Ru_3Rh(CO)_{12}]^-$ anion and $[AuPPh_3]^+$ cation. The product was shown by an X-ray diffraction study and ¹H and ³¹P NMR spectroscopy to be AuHRh₂Ru₃(CO)₁₃(PPh₃)₂ (1), in which one hydride ligand of the original anion has been replaced by a gold phosphine ligand (Fig. 1). In this, as in the earlier structure [2] there is one more Rh atom than in the starting structure.

Atomic coordinates and selected geometric parameters for 1 are given in Tables 1 and 2 respectively.

In 1, the originally tetranuclear Ru₃Rh metal framework has been converted into a bicapped tetrahedral AuRh₂Ru₃ metal core, in which the Rh(1) atom caps the Ru(2)-Ru(4)-Rh(3) face of the tetrahedral [H₂Ru₃Rh(CO)₁₂]⁻ precursor. The Ru(2)-Rh(3)-Rh(1) and Ru(2)-Ru(4)-Rh(1) faces so formed are further capped by the AuPPh₃ ligand and the μ_3 -H ligand. The μ_3 -H ligand was located from the electron density map. The other PPh₃ ligand, generated by decomposition of AuPPh₃, is coordinated to the Rh(1) atom. Correspondingly in H₂Ru₃Rh₂(CO)₁₃(PPh₃) and H₂Ru₃Rh₂-(CO)₁₂(PPh₃)₂ [2] the phosphine ligand is coordinated to an Rh atom and the hydride ligands to an Ru₂Rh face.

In 1 the Rh atoms are adjacent to each other. In $H_2Ru_3Rh_2(CO)_{13}(PPh_3)$ and $H_2Ru_3Rh_2(CO)_{12}(PPh_3)_2$, which were produced from the same anionic starting material as 1, they lie on opposite sides of the trigonal Ru₃ plane. The difference between the coordination of the Rh atoms in the structures of $H_2Ru_3Rh_2(CO)_{13}$ -(PPh₃) and $H_2Ru_3Rh_2(CO)_{12}(PPh_3)_2$ on the one hand and AuHRh₂Ru₃(CO)₁₃(PPh₃)₂ (1) on the other hand probably arises from the preference of the AuPPh₃

Table 1						
Atomic	coordinates	and	equivalent	isotropic	displacement	coeffi-
cients fo	nr 1					

cients to	11			
Atom	x	у	z	U_{eq}
	$(\times 10^{-4})$	$(\times 10^{-4})$	$(\times 10^{-4})$	$(\times 10^{-3} \text{\AA}^2)$
A11	2460(1)	31(1)	1587(1)	41(1)
Rh(1)	2598(1)	2147(1)	1337(1)	33(1)
Ru(2)	1032(1)	977(1)	1005(1)	34(1)
Rh(3)	1832(1)	1521(1)	2196(1)	37(1)
Ru(4)	1104(1)	3085(1)	1390(1)	38(1)
Ru(5)	152(1)	1683(1)	1786(1)	38(1)
P(1)	3167(3)	-1440(3)	1736(2)	44(2)
P(2)	3122(3)	2454(3)	493(2)	42(2)
C(11)	3654(10)	1920(12)	1774(7)	43(6)
O(11)	4292(7)	1836(10)	2065(6)	70(5)
C(14)	2367(11)	3455(14)	1630(8)	51(7)
O(14)	2749(7)	4109(9)	1874(7)	77(6)
C(21)	592(10)	- 249(13)	1205(7)	48(7)
O(21)	300(9)	- 985(10)	1275(6)	85(7)
C(22)	1586(11)	394(12)	452(8)	46(7)
O(22)	1768(8)	3(10)	66(6)	71(6)
C(23)	108(11)	1335(12)	405(8)	49(7)
O(23)	- 421(8)	1508(11)	33(6)	80(6)
C(31)	2829(10)	971(12)	2670(7)	47(6)
O(31)	3356(7)	682(10)	2998(5)	72(5)
C(32)	1854(10)	2486(13)	2784(7)	47(6)
0(32)	1883(8)	3059(9)	3135(6)	74(6)
C(35)	1104(9)	574(12)	2456(7)	37(6)
O(35)	907(8)	-105(9)	2691(6)	61(5)
C(41)	891(10)	3941(13)	721(8)	51(7)
O(41)	683(10)	4419(11)	1902(0)	97(7) 61(9)
O(42)	951(11)	4110(14)	1892(9)	01(0)
O(42)	929(9)	4/7/(10)	1245(9)	50(7)
O(45)	-103(10)	2639(14) 3214(10)	1022(6)	52(7) 68(5)
C(51)	= 730(7) = 814(12)	857(16)	1538(8)	64(8)
O(51)	-1378(9)	423(12)	1389(7)	104(8)
C(52)	-184(12)	2184(16)	2463(8)	66(9)
O(52)	-392(9)	2449(14)	2856(7)	103(8)
C(111)	3737(6)	-2559(9)	2769(5)	65(5)
C(112)	3659	- 2934	3308	88(7)
C(113)	2957	-2727	3519	68(6)
C(114)	2334	-2147	3192	75(6)
C(115)	2412	- 1773	2654	76(6)
C(116)	3113	- 1979	2442	42(4)
C(121)	4723(8)	- 680(8)	2043(5)	70(6)
C(122)	5568	-640	2078	84(7)
C(123)	5953	- 1379	1823	88(7)
C(124)	5493	- 2159	1533	87(7)
C(125)	4648	- 2199	1498	78(6)
C(126)	4263	- 1459	1753	54(5)
C(131)	2618(8)	- 2076(8)	619(6)	62(5)
C(132)	2265	- 2743	185	80(6)
C(133)	2051	- 3686	336	148(12)
C(134)	2190	- 3962	921	235(20)
C(135)	2543	- 3296	1356	147(12)
C(136)	2757	-2353	1204	53(5)
C(211)	4243(7)	3872(9)	1054(5)	08(0)
O(212)	4934	4445	1140	9/(8) 01(7)
C(213) = C(214)	5350	4311 3610	102 229	91(7)
C(214) = C(215)	5559 4647	3030	250 251	50(7) 60(6)
C(215)	4047	3171	609	49(4)
C(221)	3150(6)	1088(8)	-437(4)	60(5)
C(222)	3387	205	-655	64(5)
/				

Table 1 (continued)

Atom	x	у	z	$U_{\rm eq}$
	$(\times 10^{-4})$	$(\times 10^{-4})$	$(\times 10^{-4})$	$(\times 10^{-3} \text{\AA}^2)$
C(223)	3875	- 463	-281	62(5)
C(224)	4125	- 247	312	59(5)
C(225)	3887	637	530	56(5)
C(226)	3400	1304	156	41(4)
C(231)	1657(7)	2671(7)	- 321(5)	60(5)
C(232)	1094	3144	- 762	70(6)
C(233)	1301	4035	- 990	87(7)
C(234)	2072	4452	- 777	92(7)
C(235)	2635	3979	- 336	70(6)
C(236)	2428	3088	-108	51(5)

Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor.

ligand for coordination to the Rh atom. In 1, the incoming RhL₂ (L = CO or PPh₃) unit coordinates to an Ru₂Rh face of the original Ru₃Rh precursor and the AuPPh₃ ligand can coordinate to both Rh atoms. In H₂Ru₃Rh₂(CO)₁₃(PPh₃) and H₂Ru₃Rh₂(CO)₁₂(PPh₃)₂, an RhL₂ unit is coordinated to the Ru₃ face.

Complex 1 contains three μ -CO bridges, two on Ru-Rh edges and one on an Ru-Ru edge. The carbonyl ligands CO(45) and CO(14) bridge the Ru-Ru and Ru-Rh edges asymmetrically, and carbonyl CO(35) semibridges the Rh(3)-Ru(5) edge. The bond lengths Rh(3)-C(35) and Ru(5)-C(35) are 1.956(17) Å and 2.487(15) Å respectively. The semibridging connection to Ru(5) is unexpected because Ru(5) is formally electron deficient. All other carbonyl ligands are terminal. The Rh(3), Ru(4) and Ru(5) atoms are each coordinated to two terminal carbonyl ligands, while the Rh(1) atom is coordinated to one terminal carbonyl ligand and the Ru(2) atom to three terminal carbonyl ligands.

The gold phosphine ligand bridges the Rh_2Ru face asymmetrically, the longest bond (Au-Rh(1)) being 2.950(2) Å and the shortest bond (Au-Ru(2)) 2.789(2) Å. The carbonyl ligands CO(22) and CO(31) show a semibridging coordination to Au, the non-bonding Au-C distances being 2.791 Å for Au \cdots C(22) and 2.793 Å for Au \cdots C(31). The corresponding non-linear M-C-O angles are 171.4(16)° for Rh(3)-C(31)-O(31) and 166.9(14)° for Ru(2)-C(22)-O(22).

As in the reaction between $[H_2Ru_3Rh(CO)_{12}]^-$ and $[AuPPh_3]^+$, 1 can also be produced by reaction between $H_2Ru_2Rh_2(CO)_{12}$ [13] and $[AuPPh_3]^+$ in the presence of TIPF₆ with tetrahydrofuran (THF) as solvent. This mode of reaction is quite different from that of reactions of $[H_2Ru_3Rh(CO)_{12}]^-$ and $H_2Ru_2Rh_2(CO)_{12}$ with PPh₃. Reaction between $H_2Ru_2Rh_2(CO)_{12}$ and PPh₃ gives the tetrahedral phosphine derivative $H_2Ru_2Rh_2(CO)_{11}(PPh_3)$ [14], whereas reaction between $[H_2Ru_3Rh(CO)_{12}]^-$ and PPh₃ yields two trigonal bipyramidal compounds $H_2Ru_3Rh_2(CO)_{13}(PPh_3)$ and $H_2Ru_3Rh_2(CO)_{12}(PPh_3)_2$. The latter complex has also

Table 2 Selected bond lengths (Å) and angles (°) in 1

Street of the tengen	and an	B	
Bond lengths			
Au-Rh(1)	2.950(2)	Au-Ru(2)	2.789(2)
Au-Rh(3)	2.807(2)	Au - P(1)	2.307(5)
Rh(1)-Ru(2)	3.012(2)	Rh(1) - Rh(3)	2.745(2)
Rh(1) - Ru(4)	2.826(2)	Rh(1) - P(2)	2.370(5)
Rh(1) - C(11)	1.861(15)	Rh(1) - C(14)	1 972(19)
$R_{II}(1) = C(11)$ $P_{II}(2) = P_{II}(2)$	2020(2)	$R_{II}(1) = C(14)$ $P_{II}(2) = P_{II}(4)$	2.005(2)
Ru(2) = Ru(3) Ru(2) = Ru(5)	2.920(2)	Ru(2) - Ru(4) Ru(2) - C(21)	2.393(2)
Ru(2) - Ru(3)	2.759(2)	Ru(2) = C(21) Pu(2) = C(22)	1.91/(10)
Ru(2) = C(22)	1.920(19)	Ru(2) = C(25)	1.912(10)
Rh(3) - Ru(4)	2.926(2)	Rh(3) - Ru(5)	2.769(2)
Rh(3) - C(31)	1.940(16)	Rh(3) = C(32)	1.898(18)
Rh(3) - C(35)	1.956(17)	Ru(4)-Ru(5)	2.765(2)
Ru(4) - C(14)	2.121(17)	Ru(4) - C(41)	1.924(18)
Ru(4) - C(42)	1.885(20)	Ru(4) - C(45)	2.094(17)
Ru(5) - C(35)	2.487(15)	Ru(5) - C(45)	2.015(18)
Ru(5) - C(51)	1.945(19)	Ru(5)-C(52)	1.920(21)
Bond anglas			
Dona angles $D_{1}(1) A = D_{2}(2)$	(2, 2(1))	$DL(1) = A_{11} = DL(2)$	5(0(1))
Rn(1) - Au - Ru(2)	63.2(1)	Rn(1) - Au - Rn(3)	30.9(1)
Ru(2)-Au-Rh(3)	62.9(1)	Rh(1) - Au - P(1)	144.4(1)
Ru(2)-Au-P(1)	145.9(1)	Rh(3)-Au-P(1)	141.3(1)
Au-Rh(1)-Ru(2)	55.8(1)	Au-Rh(1)-Rh(3)	58.9(1)
Ru(2)-Rh(1)-Rh(3)	60.8(1)	Au-Rh(1)-Ru(4)	108.8(1)
Ru(2)-Rh(1)-Ru(4)	61.6(1)	Rh(3)-Rh(1)-Ru(4)	63.4(1)
Au-Rh(1)-P(2)	113.4(1)	Ru(2)-Rh(1)-P(2)	109.4(1)
Rh(3) = Rh(1) = P(2)	169 5(1)	$R_{u}(4) - R_{h}(1) - P(2)$	116 5(1)
A_{11} , B_{11} , $C(11)$	80.5(5)	Ru(4) Ru(1) I(2) Ru(2) Rh(1) C(11)	136.0(5)
Au = Kii(1) = C(11) Bh(2) Bh(1) C(11)	01.5(3)	Ru(2) = Rii(1) = C(11) Ru(4) = Rh(1) = C(11)	130.0(3)
Ri(3) - Ri(1) - C(11)	94.0(0)	Ru(4) - Rii(1) - C(11)	142.1(3)
P(2) - Rh(1) - C(11)	90.8(6)	Au-Rn(1)-C(14)	141.1(6)
Ru(2)-Rh(1)-C(14)	109.9(5)	Rh(3)-Rh(1)-C(14)	82.3(6)
Ru(4) - Rh(1) - C(14)	48.5(5)	P(2)-Rh(1)-C(14)	105.5(6)
C(11)-Rh(1)-C(14)	101.0(7)	Au-Ru(2)-Rh(1)	61.0(1)
Au-Ru(2)-Rh(3)	58.8(1)	Rh(1)-Ru(2)-Rh(3)	55.1(1)
Au-Ru(2)-Ru(4)	108.5(1)	Rh(1)-Ru(2)-Ru(4)	56.1(1)
Rh(3)-Ru(2)-Ru(4)	59.3(1)	Au-Ru(2)-Ru(5)	110.8(1)
Rh(1)-Ru(2)-Ru(5)	101.6(1)	Rh(3)-Ru(2)-Ru(5)	58.3(1)
$R_{II}(4) - R_{II}(2) - R_{II}(5)$	57 3(1)	$A_{11} = R_{11}(2) = C(21)$	79 2(5)
Ru(1) = Ru(2) = C(21)	138 6(5)	$R_{h}(3) = R_{h}(2) = C(21)$	96.0(5)
$R_{II}(1) = R_{II}(2) = C(21)$ $R_{II}(4) = R_{II}(2) = C(21)$	128 2(6)	$R_{II}(5) = R_{II}(2) = C(21)$ $P_{III}(5) = P_{III}(2) = C(21)$	90.0(5) 81.4(6)
Ru(4) - Ru(2) - C(21)	130.3(0)	Ru(3) - Ru(2) - C(21) Ru(1) - Ru(2) - C(22)	01.4(0)
Au - Ru(2) - C(22)	09.9(5)	Rn(1) - Ru(2) - C(22)	82.8(5)
Rn(3) - Ru(2) - C(22)	124.4(5)	Ru(4) - Ru(2) - C(22)	127.2(5)
Ru(5)-Ru(2)-C(22)	175.3(5)	C(21) - Ru(2) - C(22)	94.3(8)
Au-Ru(2)-C(23)	160.9(5)	Rh(1)-Ru(2)-C(23)	124.9(5)
Rh(3)-Ru(2)-C(23)	140.3(5)	Ru(4)-Ru(2)-C(23)	87.3(5)
Ru(5)-Ru(2)-C(23)	86.6(6)	C(21)-Ru(2)-C(23)	96.3(7)
C(22)-Ru(2)-C(23)	92.1(7)	Au-Rh(3)-Rh(1)	64.2(1)
Au-Rh(3)-Ru(2)	58.2(1)	Rh(1)-Rh(3)-Ru(2)	64.2(1)
Au-Rh(3)-Ru(4)	110.0(1)	Rh(1)-Rh(3)-Ru(4)	59.7(1)
$R_{11}(2) - Rh(3) - Ru(4)$	61 6(1)	$A_{11}-Rh(3)-Ru(5)$	110.0(1)
Ru(2) Ru(3) = Ru(4) Ph(1) Ph(3) Pu(5)	108.6(1)	$R_{11}(2) = R_{11}(3) = R_{11}(5)$	57.9(1)
$R_{II}(1) = R_{II}(3) = R_{II}(3)$ $R_{II}(4) = R_{II}(3) = R_{II}(3)$	58 0(1)	$A_{11} = Dh(2) = C(21)$	57.9(1)
Ru(4) - Ru(3) - Ru(3)	33.0(1)	Au = Au(3) = C(31) Bu(3) = Bb(3) = C(31)	1274(5)
Rn(1) - Rn(3) - C(31)	93.0(3)	Ru(2) - Ri(3) - C(31)	127.0(3)
Ru(4) - Rh(3) - C(31)	146.5(5)	Ru(5) - Rh(3) - C(31)	155.2(5)
Au - Rh(3) - C(32)	156.5(5)	Rh(1) - Rh(3) - C(32)	112.5(6)
Ru(2)-Rh(3)-C(32)	143.5(5)	Ru(4)-Rh(3)-C(32)	84.8(5)
Ru(5)-Rh(3)-C(32)	93.2(5)	C(31)-Rh(3)-C(32)	88.2(7)
Au-Rh(3)-C(35)	90.7(5)	Rh(1)-Rh(3)-C(35)	148.5(5)
Ru(2)-Rh(3)-C(35)	87.0(4)	Ru(4)-Rh(3)-C(35)	118.7(4)
Ru(5)-Rh(3)-C(35)	60.7(4)	C(31)-Rh(3)-C(35)	94.6(7)
C(32) - Rh(3) - C(35)	98.1(7)	Rh(1)-Ru(4)-Ru(2)	62.2(1)
Rh(1) - Rn(4) - Rh(3)	57.0(1)	Ru(2) - Ru(4) - Rh(3)	59.1(1)
Rh(1) = Rn(4) = Rn(5)	1064(1)	$R_{II}(2) = R_{II}(4) = R_{II}(5)$	57 1(1)
$D_h(2) = D_h(4) = N(3)$	58 1(1)	$R_{h}(1) R_{h}(4) = C(14)$	44 2(5)
Ru(3) = Ru(4) = Ru(3)	106 2(5)	$D_{1}(1) = X_{1}(4) = C(14)$	75.6(5)
KU(2) - KU(4) - C(14)	100.2(3)	KII(3) = KII(4) = C(14)	10.0(0)

Table 2 (continued)

Bond angles			
Ru(5) - Ru(4) - C(14)	133.2(5)	Rh(1)-Ru(4)-C(41)	104.2(6)
Ru(2)-Ru(4)-C(41)	110.0(5)	Rh(3)-Ru(4)-C(41)	160.6(6)
Ru(5)-Ru(4)-C(41)	132.2(5)	C(14) - Ru(4) - C(41)	94.0(7)
Rh(1)-Ru(4)-C(42)	127.1(5)	Ru(2)-Ru(4)-C(42)	153.9(6)
Rh(3)-Ru(4)-C(42)	103.2(6)	Ru(5)-Ru(4)-C(42)	97.8(6)
C(14)-Ru(4)-C(42)	85.4(8)	C(41)-Ru(4)-C(42)	92.0(8)
Rh(1)-Ru(4)-C(45)	142.2(5)	Ru(2)-Ru(4)-C(45)	80.0(5)
Rh(3)-Ru(4)-C(45)	104.6(5)	Ru(5)-Ru(4)-C(45)	46.5(5)
C(14)-Ru(4)-C(45)	172.4(7)	C(41) - Ru(4) - C(45)	87.8(7)
C(42)-Ru(4)-C(45)	87.2(8)	Ru(2)-Ru(5)-Rh(3)	63.8(1)
Ru(2)-Ru(5)-Ru(4)	65.7(1)	Rh(3)-Ru(5)-Ru(4)	63.8(1)
Ru(2)-Ru(5)-C(35)	81.5(4)	Rh(3)-Ru(5)-C(35)	43.3(4)
Ru(4)-Ru(5)-C(35)	107.1(4)	Ru(2)-Ru(5)-C(45)	87.4(6)
Rh(3)-Ru(5)-C(45)	112.8(5)	Ru(4) - Ru(5) - C(45)	48.9(5)
C(35) - Ru(5) - C(45)	156.1(6)	Ru(2)-Ru(5)-C(51)	97.3(6)
Rh(3) - Ru(5) - C(51)	140.2(6)	Ru(4) - Ru(5) - C(51)	142.6(6)
C(35) - Ru(5) - C(51)	102.4(7)	C(45)-Ru(5)-C(51)	100.0(7)
Ru(2)-Ru(5)-C(52)	165.0(5)	Rh(3) - Ru(5) - C(52)	101.3(5)
Ru(4)-Ru(5)-C(52)	109.1(6)	C(35) - Ru(5) - C(52)	87.2(7)
C(45) - Ru(5) - C(52)	99.4(8)	C(51)-Ru(5)-C(52)	94.6(9)
Rh(1)-C(14)-Ru(4)	87.3(7)	Rh(3)-C(35)-Ru(5)	76.0(5)
Ru(4) - C(45) - Ru(5)	84.6(6)		

been obtained from the reaction of $[Rh(CO)_3(PPh_3)_2]$ $[PF_6]$ with the anionic cluster compound $[H_2Ru_3Rh (CO)_{11}(PPh_3)]^-$, generated from $H_2Ru_3Rh(CO)_{10}^-$ (PPh₃)(µ-COMe) and K(BHBu₃) [11]. The corresponding reaction in which the AuPPh₃ ligand is used in place of $[Rh(CO)_3(PPh_3)_2][PF_6]$ does not give 1 but instead AuHRu₃Rh(CO)₁₀(PPh₃)₂(μ_3 -COMe) and $AuH_2Ru_3Rh(CO)_{11}(PPh_3)_2$. Both of these clusters have a pentanuclear Ru-Rh-Au metal core and contain one less rhodium atom than 1. In the crystallographically characterized AuHRu₃Rh(CO)₁₀(PPh₃)₂(μ_3 -COMe), the gold phosphine ligand is coordinated to the Ru₂Rh face, just like the μ_3 -H ligand, and the phosphine ligand is coordinated to the Rh atom. From the NMR spectra of $AuH_2Ru_3Rh(CO)_{11}(PPh_3)_2$ the gold phosphine ligand was judged to be coordinated to the Ru₃ face [11].

The ³¹ P NMR spectrum of (1) in solution shows two signals. The phosphine is coordinated to the Rh atom and gives a doublet of doublets signal at 19.0 ppm, with the coupling constants ${}^{1}J(Rh-P) = 134$ Hz and ${}^{2}J(P-H)$ = 5.1 Hz. The triplet at 70.4 ppm is assigned to the AuPPh₃ group. The triplet arises from the P-Rh twobond couplings with ${}^{2}J(Rh-P) = 6$ Hz. The data are in good agreement with those for the 31 P NMR spectrum of AuHRu₃Rh(CO)₁₀(PPh₃)₂(μ_{3} -COMe), in which the signal of AuPPh₃ at 67.1 ppm has a J(Rh-P) coupling constant of 5 Hz.

In the ¹H NMR spectrum, the unique hydride ligand gives a doublet of doublets signal at -19.7 ppm with coupling constants ¹J(Rh-H) = 14.5 Hz and ²J(P-H) = 3.3 Hz, in good agreement data for the corresponding signal from AuHRu₃Rh(CO)₁₀(PPh₃)₂(μ_3 -COMe) at

- 19.2 ppm with coupling constants ${}^{1}J(Rh-H) = 14$ Hz and ${}^{2}J(P-H) = 4$ Hz [11].

3. Experimental details

3.1. General comments

All manipulations up to the chromatographic separation were carried out under N₂ in deoxygenated solvents. The Fourier transform IR spectrum was recorded on a Nicolet 20SXC spectrometer. The ¹H NMR spectrum was recorded on a Bruker AM-250 spectrometer at 273 K in CDCl₃ with Me₄Si as reference, and the ³¹P NMR spectrum at 294 K in CDCl₃ with concentrated H₃PO₄ as external reference. Crystals were grown by slow evaporation of the solvent from a saturated hexane-CH₂Cl₂ solution. The complexes $[H_2Ru_3Rh-(CO)_{12}]^-$, $H_2Ru_2Rh_2(CO)_{12}$ and AuPPh₃ were prepared by published methods [2,13,15]. Other reagents and solvents were obtained from commercial sources. THF was dried and deoxygenated by stirring over Nabenzophenone ketyl and freshly distilled before use.

3.2. Synthesis

A THF (15 ml) solution of $[N(PPh_3)_2][H_2Ru_3Rh-(CO)_{12}]$ (86.3 mg, 0.067 mmol) was treated with solid AuPPh_3Cl (45.8 mg, 0.093 mmol) in the presence of TlPF₆. The mixture was stirred at ambient temperature for 16 h, and the solvent then evaporated off under reduced pressure. The mixture of cluster compounds obtained was separated by chromatography on silica. With 1:1 hexane:CH₂Cl₂ as eluent, **1** was isolated as the third fraction (reddish brown; 22.9 mg, 0.014 mmol). It was identified by X-ray diffraction and ¹H and ³¹P NMR spectroscopy.

An alternative route to **1** involved treating a THF solution of $H_2Ru_2Rh_2(CO)_{12}$ (190.9 mg, 0.256 mmol) with AuPPh₃Cl (128.6 mg, 0.260 mmol) in the presence of TIPF₆. The reaction was complete after 4.5 h and the chromatographic separation on silica with 1 : 1 hexane:CH₂Cl₂ as eluent gave **1** as the third fraction (60.0 mg, 0.038 mmol).

3.3. Spectroscopic data for 1

¹H NMR: $\delta - 19.7$ (dd, ¹*J*(Rh–H) = 14.5 Hz, ²*J*(P– H) = 3.3 Hz) ppm. ³¹P NMR: δ 70.4 (t, ²*J*(Rh–P) = 6 Hz), 19.0 (dd, ¹*J*(Rh–P) = 134 Hz, ²*J*(P–H) = 5.1 Hz) ppm.

IR (CH₂Cl₂): ν 2069 s, 2036 vs, 2013 vs, 1838 m,br cm⁻¹.

3.4. Structure determination

Crystal data and details of data collection and refinement are summarized in Table 3. Diffraction data were

Table 3						
Crystal	data	and	collection	parameters	for	1

Formula	$AuC_{49}H_{31}O_{13}P_{2}Rh_{2}Ru$
Formula weight	1595.7
Colour; habit	Brown block
Crystal size (mm)	$0.20 \times 0.20 \times 0.25$
Crystal system	Monoclinic
Space group	$P2_1/c$
a (Å)	16.683(7)
b (Å)	13.572(6)
c (Å)	23.482(7)
β (°)	102.51(3)
V (Å ³)	5191(4)
Ζ	4
Calculated density $(g \text{ cm}^{-3})$	2.042
$\mu (\mathrm{mm}^{-1})$	4.378
F(000)	3040.
Number of centring reflections	25
Centring 2θ (°)	16-22
Scan range 2θ (°)	4-50
Scan speed (° min ^{-1})	2.49-29.30
h, k, l range	27, 16, ±19
Number of reflections collected	9989
Number of unique reflections	9126
Number of observed data $(F > 3\sigma(F))$	4226
Number of parameters	382
R	0.0483
<i>R</i> ′	0.0519
G(weight)	0.0007
Goodness of fit	1.11
Largest difference peak (electrons $Å^{-3}$)	1.22
Largest difference hole (electrons $Å^{-3}$)	-0.83

 $\begin{aligned} R &= (\Sigma |||F_0| - ||F_c||)/\Sigma ||F_0||, \quad R' = [\Sigma w(||F_0| - ||F_c||)^2/\Sigma w|F_0|^2]^{1/2}, \text{ and goodness of fit equal to } [\Sigma w(||F_0| - ||F_c|)^2/(N_0 - N_v)]^{1/2} \text{ where } N_0 \text{ is the number of observed reflections and } N_v \text{ is the number of variables. The weighting scheme used is of the form } w^{-1} = \sigma^2(F) + gF^2. \end{aligned}$

recorded on a Nicolet R3m diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.710$ 73 Å). ω scan mode with a scan speed of 2.49–29.29° min⁻¹ was used. Intensities were corrected for Lorentz, polarization and background effects.

Metal atoms were located by direct methods, and coordinates for non-metal atoms were determined from subsequent difference electron density calculations. All calculations were performed by use of the SHELXTL PLUS [16] program package. Non-hydrogen atoms were refined anisotropically, except for the phenyl carbon atoms which were refined isotropically with the phenyl rings treated as rigid groups. Hydrogen atoms were placed in calculated positions (0.96 Å; U = 0.08 Å²) and not refined.

4. Supplementary material available

Complete lists of bond lengths and angles, and tables of hydrogen atom coordinates and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.

References

- T.A. Pakkanen, J. Pursiainen, T. Venäläinen and T.T. Pakkanen, J. Organomet. Chem., 372 (1989) 129.
- [2] H.J. Kakkonen, M. Ahlgrén, J. Pursiainen and T.A. Pakkanen, J. Organomet. Chem., 491 (1995) 195.
- [3] M.I. Bruce and B.K. Nicholson, J. Chem. Soc., Chem. Commun., 20 (1982) 1141.
- [4] M.I. Bruce and B.K. Nicholson, Organometallics, 3 (1984) 101.
- [5] E. Roland, K. Fischer and H. Vahrenkamp, Angew. Chem., Int. Edn. Engl., 22 (1983) 326.
- [6] P. Braunstein, J. Rose, Y. Dusausoy and J.-P. Mangeot, C.R. Acad. Sci., Paris, 294 (1982) 967.
- [7] P. Braunstein, J. Rose, A. Dedieu, Y. Dusausoy, J.-P. Mangeot, A. Tiripicchio and M. Tiripicchio-Camellini, J. Chem. Soc., Dalton Trans., (1986) 225.
- [8] H.J. Kakkonen, M. Ahlgren, T.A. Pakkanen and J. Pursiainen, Acta Cryst., Sect. C, (1994) 528.
- [9] J. Pursiainen, M. Ahlgren and T.A. Pakkanen, J. Organomet. Chem., 297 (1985) 391.
- [10] J. Pursiainen, T.A. Pakkanen, M. Ahlgren and J. Valkonen, Acta Cryst., Sect. C, (1993) 1142.
- [11] J. Evans, P.M. Stroud and M. Webster, J. Chem. Soc., Dalton Trans., (1991) 1017.
- [12] H.J. Kakkonen, M. Ahlgrén, T.A. Pakkanen and J. Pursiainen, J. Organomet. Chem., 482 (1994) 279.
- [13] J. Pursiainen, T.A. Pakkanen, B.T. Heaton, C. Seregni and R.G. Goodfellow, J. Chem. Soc., Dalton Trans., (1986) 681.
- [14] J. Pursiainen and T.A. Pakkanen, J. Organomet. Chem., 315 (1986) 353.
- [15] F.G. Mann, A.F. Wells and D. Purdie, J. Chem. Soc., (1937) 1822.
- [16] SHELXTL PLUS, Release 3.4, Nicolet Co., Madison, WI, 1988.